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Abstract—Feedrate scheduling has significant impacts on mo-
tion efficiency, equipment vibration, and machining quality in
robotic manipulation and computer numerical control machining.
As the most effective methods for jerk-limited feedrate schedul-
ing, however, optimization-based approaches face challenges such
as high computational cost, artificial infeasibility, and feedrate
oscillations. This paper proposes a triple linear programming
(TLP) method for solving the non-convex 3rd-order problem.
To avoid artificial infeasibility caused by convexification, an
incremental linearization method (ILM) is developed to generate
a feasible solution under non-stationary boundary conditions.
Feedrate profiles are further adjusted to eliminate the oscillations
caused by the discretization. In experiments on machine tools
and robotic manipulators, the proposed method saves more
than 10% of motion time than existing linear programming
methods and reduces computational time by more than 80% than
baselines based on sequential quadratic programming with better
time-optimality. Furthermore, the proposed method outperforms
baselines regarding feasibility and feedrate oscillations.

Index Terms—Feedrate scheduling, jerk constraint, feedrate
oscillation, linear programming, trajectory planning.

I. INTRODUCTION

Feedrate scheduling is a fundamental problem in robotic
manipulation [1] and computer numerical control machining
[2], [3], which has significant impacts on efficiency [4], [5],
equipment vibration [6], [7], and surface quality [8]. In the
widely applied two-step motion planning framework, the aim
of feedrate scheduling is to generate a feedrate profile to
drive the equipment along a given path within a minimal
time, while satisfying user-specified constraints. For example,
jerk constraints are widely introduced to avoid equipment
vibrations and enhance machining quality [3]. The planned
profiles are subsequently tracked by low-level controllers to
deal with model inaccuracies, external loads, and disturbances.

There exist some approaches to solve the feedrate schedul-
ing problem, such as numerical integration [9], dynamic pro-
gramming [6], reachability analysis [10], convex optimization
[1], and curve templates like S-shaped curves [3]. When
considering nonlinear dynamics and strict jerk constraints,
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optimization-based methods are currently the most effective
ones, achieving high numerical stability. However, discretiza-
tion and the non-convex nature of jerk constraints give rise
to pervasive challenges [1], [11], such as high computational
cost, artificial infeasibility, and feedrate oscillations.

A limited computational cost is essential for online high-
speed machining and robotic manipulation facing unknown
environments [12]. Since Debrouwere et al. [1] established
the fundamental formulation of 3rd-order problems, extensive
research has been devoted to linearization. Erkorkmaz et al. [2]
used the initial solution of [1] as the final trajectory with linear
programming. Ji et al. [13] assumed a spline form of feedrate
profiles and transformed the problem into a linear one. How-
ever, the pseudo-jerk is introduced for convexification, leading
to conservative scaling and hindering the time-optimality.

After the convexification of non-convex 3rd-order problems,
the feasible regions are artificially restricted, which might lead
to artificial infeasibility [11]. Considering the special structure
of 3rd-order constraints, an item of parametric velocity is
conservatively substituted by an upper bound which is usually
obtained by a 2nd-order optimal solution [2], [13]. The above
process is feasible for stationary boundary, i.e., the initial
and terminal velocities as well as accelerations are zero [14].
However, the feasibility is not guaranteed under non-stationary
boundary conditions, especially when the boundary velocity is
large and the upper bound of the jerk is small.

Discretization of the optimization horizon leads to constraint
exceedance in each grid interval [10]. Although the discretiza-
tion can be refined to reduce the exceedance, the computational
cost significantly increases [15]. Theoretically speaking, con-
straint exceedances within a certain range are acceptable since
the specified constraints in machining are lower than the upper
limits of mechanical performance. However, the exceedance
of velocity constraints leads to feedrate oscillations, which are
harmful to equipment vibration and machining quality [8]. The
elimination of feedrate oscillations is critical for high-speed
machining and robotic manipulation.

This paper aims to address the above challenges in jerk-
limited feedrate scheduling, i.e., high computational cost,
artificial infeasibility, and feedrate oscillations. A triple linear
programming method is proposed to solve the non-convex
3rd-order problem. To avoid artificial infeasibility, an incre-
mental linearization method is proposed to generate a feasible
solution. Feedrate profiles are further adjusted to eliminate
oscillations caused by discretization. Experiments on machine



tools and robotic manipulators demonstrate that the proposed
method outperforms baselines regarding motion efficiency,
computational cost, feasibility, and feedrate oscillations.

II. PROBLEM FORMULATION

Considering 𝑛-axis equipment like machine tools and
robotic manipulators, a regular path of C3 continuouity is given
as P : 𝒒 = 𝒒 (𝑢), 𝑢 ∈ [0, 1], where the configuration vector
𝒒 ∈ R𝑛. The task is to generate a feedrate profile 𝑢 = 𝑢 (𝑡),
𝑡 ∈ [0, 𝑡f] to drive the equipment along P within minimal time
𝑡f while satisfying some user-specified constraints. Denote
•′, •′′, •′′′, ¤•, ¥•, and •̈ as d•

d𝑢 , d2•
d𝑢2 , d3•

d𝑢3 , d•
d𝑡 , d2•

d𝑡2 , and d3•
d𝑡3 ,

respectively. Consider the following problem:

min 𝑡f, (1a)
s.t. 0 ≤ ¤𝑢 ≤ 𝑣 (𝑢) , (1b)

𝒏 (𝑢) ¤𝑢2 + 𝒎 (𝑢) ¥𝑢 ≤ 𝒈 (𝑢) , (1c)

𝒓 (𝑢) ¤𝑢3 + 𝒔 (𝑢) ¤𝑢 ¥𝑢 + 𝒕 (𝑢) 𝑢 ≤ 𝒇 (𝑢) , (1d)
𝑢 (0) = 0, ¤𝑢 (0) = ¤𝑢0, ¥𝑢 (0) = ¥𝑢0, (1e)
𝑢 (𝑡f) = 1, ¤𝑢 (𝑡f) = ¤𝑢f, ¥𝑢 (𝑡f) = ¥𝑢f. (1f)

The dynamic equation is implicitly included as d
d𝑡 (𝑢, ¤𝑢, ¥𝑢) =

( ¤𝑢, ¥𝑢, 𝑢). The constraints (1b)-(1d) are user-specified, which
covers some typical constraints as follows [1]. For example,

¤𝒒 = 𝒒′ ¤𝑢, ¥𝒒 = 𝒒′′ ¤𝑢2 + 𝒒′ ¥𝑢, �̈� = 𝒒′′′ ¤𝑢3 + 3𝒒′′ ¤𝑢 ¥𝑢 + 𝒒′𝑢. (2)

Evidently, the velocity constraint ∥ ¤𝒒∥ ≤ 𝑉max, the acceleration
constraint | ¥𝒒 | ≤ ¥𝒒max, and the jerk constraint | �̈� | ≤ �̈�max
can be represented by (1b), (1c) and (1d), respectively. The
boundary conditions (1e) and (1f) provide the initial and
terminal positions, velocities, and accelerations. Consider the
dynamic model of the equipment as

𝝉 =𝑴 (𝒒) ¥𝒒 + ¤𝒒⊤𝑪 (𝒒) ¤𝒒 + 𝑮 (𝒒)
=
(
𝑴𝒒′′ + 𝒒′⊤𝑪𝒒′

)
¤𝑢2 + 𝑴𝒒′ ¥𝑢 + 𝑮 .

(3)

The torque constraint |𝝉 | ≤ 𝝉max can be represented by (1c).
Multiple constraints can be dealt with in one time, noting that
constraints (1c) and(1d) are vector inequalities.

Without loss of generality, assume that 𝒇 (𝑢) > 0 holds in
(1d). In this case, the equipment is allowed to move arbitrarily
slowly under the constraints. To eliminate the free terminal
time 𝑡f, a classical transformation [1] is applied as follows:

𝑎 (𝑢) = ¤𝑢2, 𝑏 (𝑢) = 1
2
𝑎′ (𝑢) = ¥𝑢, 𝑐 (𝑢) = 𝑏′ (𝑢) = 𝑢

¤𝑢 . (4)

Then, problem (1) is transformed into the parametric domain
as follows:

max 𝐽 =

∫ 1

0
𝑎 (𝑢) d𝑢, (5a)

s.t. 𝑎′ (𝑢) = 2𝑏 (𝑢) , 𝑏′ (𝑢) = 𝑐 (𝑢) , (5b)

0 ≤ 𝑎 ≤ 𝑣2 (𝑢) , (5c)
𝒏 (𝑢) 𝑎 + 𝒎 (𝑢) 𝑏 ≤ 𝒈 (𝑢) , (5d)

𝒓 (𝑢) 𝑎 + 𝒔 (𝑢) 𝑏 + 𝒕 (𝑢) 𝑐 ≤ 𝒇 (𝑢) 𝑎−1/2, (5e)

𝑎 (0) = ¤𝑢2
0, 𝑏 (0) = ¥𝑢0, 𝑎 (1) = ¤𝑢2

f , 𝑏 (1) = ¥𝑢f. (5f)

In (5a), the objective is to maximize the parametric velocity
𝑎 over the path P, which is capable of minimizing the time 𝑡f
in (1) in an approximate sense.

III. METHODS

This section aims to solve problem (5) for a time-optimal
trajectory satisfying user-specified constraints without feedrate
oscillations. In Section III-A, a novel method based on triple
linear programming (TLP) is proposed to solve problem (5).
To avoid artificial infeasibility caused by the linearization,
an incremental linearization method (ILM) is proposed to
generate a feasible solution in Section III-B. Then, the pro-
posed TLP-ILM method is compared with existing methods
in Section III-C. Finally, to eliminate the feedrate oscillations
caused by the discretization, a feedrate adjusting method is
proposed in Section III-D.

A. Solving Problem (5) Based on Triple Linear Programming
Evidently, problem (5) is non-convex due to the concave

term ∗ ≤ 𝒇 𝑎−1/2 in the 3rd-order constraint (5e). Note that
𝒇 (𝑢) > 0 holds. In other words, the feasible region of
problem (5) is non-convex due to the non-convex inequality
constraint (5e). The non-convexity is harmful to the computa-
tional efficiency and the numerical stability of the optimization
algorithm.

To address this issue, a novel method based on triple linear
programming (TLP) is proposed to solve problem (5). First, a
2nd-order solution �̄� (𝑢) is solved by the following problem:

max 𝐽 =

∫ 1

0
�̄� (𝑢) d𝑢, (6a)

s.t. �̄�′ = 2�̄�, 0 ≤ �̄� ≤ 𝑣2, 𝒏�̄� + 𝒎�̄� ≤ 𝒈, (6b)

�̄� (0) = ¤𝑢2
0, �̄� (1) = ¤𝑢

2
f . (6c)

In other words, the 3rd-order constraints (5e) are temporarily
ignored. In this way, the feasible region of the 2nd-order
problem (6) is convex.

Note that the 2nd-order solution �̄� (𝑢) is infeasible for the
original 3rd-order problem (5) since the 3rd-order constraints
(5e) are violated. To address the above issue, a feasible
solution

(
�̃�, �̃�, 𝑐

)
for problem (5) is obtained by the following

problem:

max 𝐽 =

∫ 1

0
�̃� (𝑢) d𝑢, (7a)

s.t. �̃�′ = 2𝑏, �̃�′ = 𝑐, 0 ≤ �̃� ≤ 𝑣2, 𝒏�̃� + 𝒎�̃� ≤ 𝒈, (7b)

𝒓�̃� + 𝒔�̃� + 𝒕𝑐 ≤ 𝒇 𝑙 (�̃�; �̄�) , (7c)

�̃� (0) = ¤𝑢2
0, �̃� (0) = ¥𝑢0, �̃� (1) = ¤𝑢2

f , �̃� (1) = ¥𝑢f, (7d)

where 𝑙 (•; �̄�) is the linearization of •−1/2 at �̄�. Since the
function 𝑎 ↦→ 𝑎−1/2 is concave, it holds that

𝑙 (𝑎; �̄�) ≤ 𝑎−1/2, ∀𝑎 > 0, �̄� > 0. (8)

Therefore, the feasible region of problem (7) is a subset of
that in problem (5). In other words,

(
�̃�, �̃�, 𝑐

)
is feasible in the

original problem (5) since

𝒓�̃� + 𝒔�̃� + 𝒕𝑐 ≤ 𝒇 𝑙 (�̃�; �̄�) ≤ 𝒇 �̃�−1/2. (9)



Fig. 1. Feasibility of the linearized problem. (a-b) The proposed TLP method.
(c-d) Existing methods [1], [2], [13], [14].

Evidently, problem (7) is a linear programming (LP); hence,
the feasible region of problem (7) is convex.

Consider a case where the 2nd-order solution �̄� is signifi-
cantly larger than the 3rd-order solution �̃�, i.e., �̄� ≫ �̃�. Then,
the scaling in (7c) would be over-conservative, hindering the
time-optimality. In this case, a solution (𝑎∗, 𝑏∗, 𝑐∗) is further
optimized by the following LP:

max 𝐽∗ =

∫ 1

0
𝑎∗ (𝑢) d𝑢, (10a)

s.t. 𝑎∗′ = 2𝑏∗, 𝑏∗′ = 𝑐∗, (10b)

0 ≤ 𝑎∗ ≤ 𝑣2, 𝒏𝑎∗ + 𝒎𝑏∗ ≤ 𝒈, (10c)
𝒓𝑎∗ + 𝒔𝑏∗ + 𝒕𝑐∗ ≤ 𝒇 𝑙 (𝑎∗; �̃�) , (10d)

𝑎∗ (0) = ¤𝑢2
0, 𝑏

∗ (0) = ¥𝑢0, (10e)

𝑎∗ (1) = ¤𝑢2
f , 𝑏

∗ (1) = ¥𝑢f. (10f)

The difference between problems (7) and (10) is the lineariza-
tion point of the 3rd-order constraint (5e). Intuitively, the
feasible region of problem (10) appears to be larger than that
of problem (7). In fact, since �̃� is feasible in problem (10), it
holds that 𝐽∗ ≥ 𝐽. In other words, problem (10) can further
optimize the trajectory based on problem (7).

Similar to [1], continuous problems (6), (7), and (10) can
be directly discretized into LPs.

B. Incremental Linearization Method

For the case where the boundary conditions are nearly
stationary, i.e., ( ¤𝑢0, ¥𝑢0, ¤𝑢f, ¥𝑢f) ≈ 0, the linearized problems
(7) and (10) are feasible. However, for the case where the
boundary conditions are non-stationary, especially when �̄� is
large, the linearized problems (7) and (10) might be infeasible,
as shown in Fig. 1(a). Similarly, a method that substitutes the
large �̄� by a small one in (7c) also lacks feasibility guarantees.
If problem (5) is feasible, then a proper �̄�proper always exists, as
shown in Fig. 1(b). For example, let �̄�proper itself be a feasible
solution, then the linearized problem (7) contains at least one
feasible point, i.e.,

(
�̄�proper,

1
2 �̄�
′
proper,

1
2 �̄�
′′
proper

)
.

Algorithm 1: Feedrate Scheduling with TLP Method
Input: The parametric path P, the boundary conditions

𝒖 =
(
¤𝑢2

0, ¥𝑢0, ¤𝑢2
f , ¥𝑢f

)
, the process constraints, and the

number of iterations 𝑀 .
Output: A trajectory 𝑎 = 𝑎∗ (𝑢).

1: Construct the 3rd-order non-convex problem (5);
2: Solve �̄� by problem (6) with 𝒖;
3: if problem (7) with 𝒖 is feasible then
4: Solve �̃� by problem (7) with 𝒖;
5: Solve 𝑎∗ by problem (10) with 𝒖;
6: else
7: Solve �̄� by problem (6) with 0;
8: Solve �̃� by problem (7) with 0;
9: Solve 𝑎∗0 by problem (10) with 0;

10: for 𝑝 ← 1, 2, . . . , 𝑀 do
11: if problem (10) with 𝑝

𝑀
𝒖 is feasible then

12: Solve 𝑎∗𝑝 by problem (11) with 𝑝

𝑀
𝒖;

13: else
14: return an infeasibility report;
15: end if
16: end for
17: Set 𝑎∗ ← 𝑎∗

𝑀
;

18: end if

However, it is challenging to find a proper �̄�proper in practice.
To address this issue, an incremental linearization method
(ILM) is proposed to iteratively find a feasible initial solution.
First, consider a problem with stationary boundary conditions,
i.e., set ( ¤𝑢0, ¥𝑢0, ¤𝑢f, ¥𝑢f) = 0 in problems (6), (7), and (10).
Denote the solution for problem (10) as 𝑎∗0. Then, given the
number of iterations 𝑀 , the 𝑝-th step is provided as follows:

min 𝐽∗𝑝 =

∫ 1

0
𝑎∗𝑝 (𝑢) d𝑢, (11a)

s.t. 𝑎∗𝑝
′
= 2𝑏∗𝑝 , 𝑏∗𝑝

′
= 𝑐∗𝑝 , (11b)

0 ≤ 𝑎∗𝑝 ≤ 𝑣2, 𝒏𝑎∗𝑝 + 𝒎𝑏∗𝑝 ≤ 𝒈, (11c)

𝒓𝑎∗𝑝 + 𝒔𝑏∗𝑝 + 𝒕𝑐∗𝑝 ≤ 𝒇 𝑙
(
𝑎∗𝑝; 𝑎𝑝−1

)
, (11d)

𝑎∗𝑝 (0) =
𝑝

𝑀
¤𝑢2

0, 𝑏
∗
𝑝 (0) =

𝑝

𝑀
¥𝑢0, (11e)

𝑎∗𝑝 (1) =
𝑝

𝑀
¤𝑢2

f , 𝑏
∗
𝑝 (1) =

𝑝

𝑀
¥𝑢f. (11f)

In other words, the 3rd-order constraints (5e) are linearized
at the previous solution 𝑎𝑝−1, which is nearly feasible in
problem (11) at the 𝑝-th step. At the final step 𝑀 , the solution(
𝑎∗
𝑀
, 𝑏∗

𝑀

)
satisfies the original boundary conditions (5f).

The proposed method in Sections III-A and III-B is sum-
marized in Algorithm 1.

C. Comparison with Existing Methods

In some existing works on optimization-based 3rd-order
trajectory planning [1], [2], [13], [14], the initial solution �̂�



Fig. 2. The phenomenon of feedrate oscillations in optimization-based
trajectory planning. The maximal feedrate is 50 mm/s.

is obtained as follows:

max
( �̂�,�̂�,�̂�)

𝐽 =

∫ 1

0
�̂� (𝑢) d𝑢, (12a)

s.t. �̂�′ = 2𝑏, �̂�′ = 𝑐, 0 ≤ �̂� ≤ 𝑣2, 𝒏�̂� + 𝒎�̂� ≤ 𝒈, (12b)

𝒓�̂� + 𝒔�̂� + 𝒕𝑐 ≤ 𝒇 �̄�−1/2, (12c)

�̂� (0) = ¤𝑢2
0, �̂� (0) = ¥𝑢0, �̂� (1) = ¤𝑢2

f , �̂� (1) = ¥𝑢f. (12d)

In these methods, it is noted that ∀𝑎 = 𝑎 (𝑢) is feasible
in problem (5), ∀𝑢 ∈ [0, 1], 𝑎 (𝑢) ≤ �̄� (𝑢) holds point-by-
point where �̄� is the 2nd-order optimal solution in problem
(6). The above observation can be proved by considering a
feasible solution max{�̄�, 𝑎} in problem (6). Therefore, it is
acknowledged that

�̄�−1/2 ≤ 𝑎−1/2, ∀𝑎 feasible in problem (5), (13)

resulting in the conservative scaling of the 3rd-order constraint
(12c). Note that the feasible region of problem (12) is convex
and is a subset of that in problem (5). However, the scaling
(13) is more conservative than (8) since 𝑙 (𝑎; �̄�) > �̄�−1/2.

Denote the feasible region of problems (5), (6), (7), and
(12) as D, D, D̃, and D̂, respectively. Then, it holds that

D̂ ⊂ D̃ ⊂ D ⊂ D. (14)

Therefore, 𝐽 ≤ 𝐽 ≤ 𝐽∗ holds. In other words, the proposed TLP
method is capable of obtaining a feasible solution with better
time-optimality than existing methods based on conservative
scaling (13).

Considering the case under non-stationary boundary condi-
tions, the feasibility is further compared in Fig. 1. If a large �̄� is
applied in (12c), as shown in Fig. 1(c), then the feasible region
might be empty. The above case is common when ¤𝑢0, ¥𝑢f ≫ 0.
If a small �̄� is applied in (12c), as shown in Fig. 1(d), then
the feasible region can be non-empty. However, the original
3rd-order constraints (5e) might be violated even for a feasible
solution for problem (12). In contrast to the proposed ILM, the
above existing method lacks the ability to generate a feasible
solution under non-stationary boundary conditions.

Fig. 3. The computation of 𝐿min in (15b). (a) The acceleration profile. (b)
The velocity profile.

D. Elimination of Feedrate Oscillations

In optimization-based trajectory planning methods, the dis-
cretization of optimization problems can lead to constraint
violations [10]. For example, a feedrate profile is shown in
Fig. 2(a), where the feedrate constraint is set as 50 mm/s.
Although the constraint is generally satisfied, approximately
1% oscillations occur near the upper bound, as shown in Fig.
2(b). In fact, the planned feedrate profile satisfies the constraint
at grid points, but the feedrate oscillates in discretization
intervals, as shown in Fig. 2(c). Note that it is the interpolated
feedrate that has a direct impact on the machining quality.

To address the above issue, an oscillation elimination
method is proposed. Denote the discretization grid as {𝑢𝑖}𝑁𝑖=0
and the planned trajectory as 𝑎∗

𝑖
= 𝑎∗ (𝑢𝑖). Consider a tolerance

𝜀, the maximal feedrate 𝑉max, the maximal acceleration 𝐴max,
the maximal jerk 𝐽max.

[
𝑢𝑖1 , 𝑢𝑖2

]
is determined as a continuous

segment maintaining the maximal feedrate if

∥𝒒′ (𝑢𝑖)∥ 𝑎∗𝑖 ≥ 𝑉max − 𝜀, ∀𝑖1 ≤ 𝑖 ≤ 𝑖2, (15a)
𝑖2∑︁

𝑖=𝑖1+1
∥𝒒 (𝑢𝑖) − 𝒒 (𝑢𝑖−1)∥ ≥ 𝐿min. (15b)

𝐿min is the minimal length for adjusting the feedrate.
For a determined continuous segment

[
𝑢𝑖1 , 𝑢𝑖2

]
, the feedrate

profile is substituted by one with a constant feedrate 𝑉max
in

[
𝑢𝑖1 , 𝑢𝑖2

]
. At the initial point 𝑢𝑖1 , denote the feedrate as

𝐹𝑖1 =


𝒒′ (𝑢𝑖1 )

 √︃𝑎∗

𝑖1
and the tangential acceleration 𝐴𝑖1 =

𝒒′ (𝑢𝑖1 )

′ 𝑎∗𝑖1 + 

𝒒′ (𝑢𝑖1 )

 𝑏∗𝑖1 . The kinematic state is driven

from
(
𝐹𝑖1 , 𝐴𝑖1

)
to (𝐹max, 0) as fast as possible within a 2-phase

jerk profile, i.e., 𝐽 ≡ −𝐽max for 𝑡1 time and then 𝐽 ≡ 𝐽max for
𝑡2. Then, (𝑡1, 𝑡2) can be solved as follows:

0 = 𝐴𝑖1 + 𝐽max (𝑡1 − 𝑡2) , (16a)

𝐹max = 𝐹𝑖1 + 𝐴𝑖1 𝑡1 + 𝐽max

(
1
2
(𝑡1 + 𝑡2)2 − 𝑡22

)
. (16b)

A similar process is applied to the terminal point 𝑢𝑖2 . In this
way, feedrate oscillations are eliminated since the interpolated
points are much denser than the optimization grid points.

As shown in Fig. 3, let 𝐴𝑖1 = 𝐴max and 𝐹𝑖1 = 𝑉max, and
𝐿min is computed as follows:

𝐿min =

(
9
√

2 + 4
)
𝐴2

max

6𝐽2
max

+

(
2
√

2 + 2
)
𝑉max

𝐽max
. (17)



TABLE I
QUANTITATIVE RESULTS IN STANDARD PARAMETERS.

Experiments Metrics LP [2] SQP [1] TLP (Ours)

Butterfly (2-axis) 𝑇f (s) 14.208 12.156 11.936
𝑇c (s) 0.262 2.987 0.397

Mold (3-axis) 𝑇f (s) 1.645×104 1.330×104 1.105×104

𝑇c (s) 8.187×102 1.850×104 1.575×103

Blade (5-axis) 𝑇f (s) 1.887×103 1.662×103 1.649×103

𝑇c (s) 4.535×102 5.315×103 6.302×102

Franka (7-axis) 𝑇f (s) 8.114 7.737 7.707
𝑇c (s) 0.835 7.464 1.560

IV. EXPERIMENTS

A. Setup

The proposed TLP method is compared with the following
baselines. (a) LP [2]: A method based on linear programming,
as described in Section III-C. (b) SQP [1]: A method which
applies the result of LP as initial solutions and solves problem
(5) by sequential quadratic programming. Due to the limitation
of computational resources, only one iteration is applied in the
SQP method. The methods are compared regarding motion
time 𝑇f, computational time 𝑇c, and trajectory quality. In this
paper, the motion time is computed by 𝑡f =

∫ 1
0

d𝑢√
𝑎 (𝑢)

where

the planned 𝑎 (𝑢) is piecewise quadratic.

B. Parametric Study

A 2-axis butterfly curve is used as the parametric path
P. Let maximal feedrate 𝑉max=100 mm/s, axial acceleration
𝐴max=800 mm/s2, and axial jerk 𝐽max=3000 mm/s3. The fee-
drate distributions of the three methods are shown in Fig. 4(a).
It can be observed that the proposed TLP method achieves a
feedrate profile similar to SQP. The motion time 𝑇f and the
computational time 𝑇c are provided in Tab. I. TLP saves 16.0%
of motion time than LP, while reducing computational time by
86.7% compared to SQP within similar motion time.

To evaluate feedrate oscillations, the classification of fee-
drate in the proposed TLP method is shown in Fig. 4(b), and
the profiles of the three methods are shown in Fig. 4(c)-(d).
Compared to the two baselines, the proposed TLP exhibits
little feedrate oscillations, incurring only single peaks at the
two ends of the constant feedrate segments.

Fix 𝑉max, 𝐽max and vary 𝐴max. The motion time 𝑇f with dif-
ferent constraints is shown in Fig. 4(e). Theoretically speaking,
𝑇f should decrease with increasing 𝐴max. However, for LP, the
scaling (12c) is too conservative, leading to a longer motion
time. The above anomalous effect is slight in the proposed
TLP, as the linearization (11d) is much tighter.

Consider non-stationary boundary conditions, where ¤𝑢0 > 0
and ¥𝑢0 = ¤𝑢f = ¥𝑢f = 0. It can be observed from Fig. 4(f) that
the proposed TLP is capable of finding a feasible solution for
1 ≤ ¤𝑢2

0 ≤ 20, which is attributed to the developed ILM. In
contrast, both LP and SQP are infeasible when ¤𝑢2

0 ≥ 15.

C. Case Study

Consider the 3-axis machine tool shown in Fig. 5(a1),
where a single-point milling process of a Mercedes-Benz mold

Fig. 4. Results of parametric study. (a) Feedrate distributions. (b) Classifi-
cation of feedrate in TLP. (c-d) Feedrate and tangential jerk profiles. (e-f)
Motion time with different constraints and boundary conditions.

is considered. Set the maximal feedrate as 3,000 mm/min,
the axial acceleration as 500 mm/s2, and the axial jerk as
10,000 mm/s3. The feedrate distribution of the proposed TLP
method is shown in Fig. 5(b). The planned acceleration and
jerk profiles are shown in Fig. 5(c), where the probability
density functions (PDF) show that the constraints are satisfied.
The planned trajectory satisfies the constraints, which indicates
that the proposed TLP is applicable to 3-axis machining. It can
be observed from Tab. I that TLP saves 32.8% and 16.9% of
motion time compared to LP and SQP, respectively, within
limited computational time.

A blade is considered in a 5-axis machine tool shown in Fig.
5(a2). Set the maximal feedrate as 1,000 mm/min, the axial
orientation acceleration as 5 rad/s2, and the axial orientation
jerk as 120 rad/s3. The feedrate distribution and the planned
trajectory of TLP is shown in Fig. 5(c) and (e), respectively.
The proposed TLP can generate a feasible trajectory within
kinematic constraints, which can be observed from PDFs. By
Tab. I, TLP saves 12.6% of motion time compared to LP, while
reducing computational time by 88.1% compared to SQP.

A 7-axis Franka robot arm is considered in Fig. 5(a3) with



Fig. 5. Equipment and results of case study. (a) Equipment. (b)-(c) Feedrate distributions. (d)-(f) Planned trajectories and probability density functions (PDF).

a dynamic model [16]. A parametric path is followed with
maximal axial torque 25 N·m and maximal axial jerk 40 rad/s3.
As shown in Fig. 5(f), kinematic and dynamic constraints are
satisfied in the planned trajectory. Similar to the above cases,
the proposed TLP method outperforms LP and SQP in terms
of motion time and computational time, respectively.

V. CONCLUSION

This paper proposes a jerk-limited oscillation-free feedrate
scheduling method based on triple linear programming (TLP)
which is capable of finding a feasible trajectory under non-
stationary boundary conditions. Compared to existing linear
programming methods, the proposed TLP saves more than
10% of motion time while reducing computational time by
more than 80% with better time-optimality than the base-
line based on sequential quadratic programming. TLP also
significantly outperforms baselines regarding feasibility and
feedrate oscillations. The proposed method has the potential
to be applied to various machining processes with different
equipment like robotic manipulators and 5-axis machine tools.
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